If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=35
We move all terms to the left:
3x^2+x-(35)=0
a = 3; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·3·(-35)
Δ = 421
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{421}}{2*3}=\frac{-1-\sqrt{421}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{421}}{2*3}=\frac{-1+\sqrt{421}}{6} $
| -5x-1=-6x+6 | | 6x-7=4x=5 | | 0.08(y-6)+0.10y=0.04y-0.9 | | 11x+26=3x-30 | | 13.05=g/2-(-8.94) | | 10x-20=4x+22 | | 3(y+6)-6y=-9 | | -3x=x4 | | 2u+5(u-2)=18 | | -(j+2)=3 | | -3(-8u+8)-4u=4(u-2)-4 | | 11.55=b/3+9.6 | | 1.618=12/x | | 2(w-1)=-9w+31 | | 2(x-1)^2+10=82 | | 3(2x+1)-x=2(x+1)-2 | | 1.2x+16=4.8-2 | | 3y-4=53 | | (1)(4)x-5=x-14 | | 35x+612=912 | | 8x-12=1x-8 | | 8x-12=x-8 | | 2(6w)+2(8w)+2(6(8)=208 | | (4x-6)(2)=x-8 | | 6x=4x-8-10 | | 17w+3=180 | | Y=29(2)-2x | | -2j(j-1)+3(j+4)=8 | | 2x+6)+x=126 | | 980x2-210x+8=0 | | 10x+5-x=41 | | 8/5=n4 |